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Abstract—The Gompertz demographic model describes rates of aging and age-
independent mortality with the parameters « and A, respectively. Estimates of these
parameters have traditionally been based on the assumption that mortality rates are
constant over short to moderate time periods. This assumption is questionable even
for very large samples assayed over short time intervals. In this article, we compare
several methods for estimating the Gompertz parameters, including some that do not
assume constant mortality rates. A maximum likelihood method that does not as-
sume constant mortality rates is shown to be best, based on the bias and variance of
the Gompertz parameter estimates. Moreover, we show how the Gompertz equation
can then be used to predict mean longevity and the time of the n,, percentile of
mortality. Methods are also developed that assign confidence intervals to such esti-
mates. In some cases, these statistics may be estimated accurately from only the
early deaths of a large cohort, thus providing an opportunity to estimate longevity on
long-lived organisms quickly.

Key Words: Gompertz equation, estimating longevity, jackknife, demography, bootstrap, maxi-
mum likelihood

INTRODUCTION

THERE ARE compelling reasons to believe that a single phenomenon, the decline in the
force of natural selection, is the cause of aging in plants and animals (Rose, 1991). But
prior to the application of evolutionary theory to the problem of aging, phenomenolog-
ical models were developed that attempted to capture the observation of increasing
rates of mortality with age. One such model is that due to Benjamin Gompertz (1825),
the “*Gompertz model,”” which assumes that mortality rates increase exponentially with
age. Although evolutionary theory shows that rates of mortality will increase with age
in most multicellular organisms (Charlesworth, 1980), there is no deductive demonstra-
tion for the exponential form of the Gompertz model. Nevertheless, the Gompertz
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model has proven popular as a general description of many observed patterns of mor-
tality (e.g., Finch, 1990).

Recently, several large studies with medflies (Carey et al., 1592) and Drosophila
(Curtsinger et al., 1992) have concluded that rates of mortality may not increase ex-
ponentially in the oldest age classes, contrary to the Gompertz model. Brooks,
Lithgow, and Johnson (1994) collected data that suggest that this phenomenon may be
due, in part, to the existence of genetic or phenotypic subpopulations with very differ-
ent rates of aging. Despite this uncertainty, there are still potentially useful applications
of the Gompertz equation.

In this article, we explore some practical issues concerning the use of the Gompertz
equation to infer demographic parameters. We test these methods using a large array of
data we have collected from populations of Drosophila melanogaster. For many spe-
cies, it may be quite difficult and time consuming to follow a cohort through their entire
life span in order to estimate the mean longevity, maximum longevity, and the param-
eters of the Gompertz equation. We show how one may use information from deaths
early in life to estimate the mean longevity and the time to which the last 5 or 1% of the
population is expected to survive. In addition, we develop techniques for placing con-
fidence intervals on these estimates, and we test their accuracy using computer situa-
tions.

STATISTICAL ANALYSIS
Gompertz equation

Mortality data is typically collected by following an initial cohort of N, individuals
over time and recording the number of survivors, N,, at fixed intervals. The Gompertz
equation that describes the instantancous rate of mortality in these types of experi-
ments is,

dN
u(t) = N dr = A exp(at). (1)

Consequently, the number of survivors at any time in the future can be described
with eq. (1) as,

N, = Nop, 2)
where,
A(l — exp(ar))
pr=exp\—— — (3)

p,, then, is the probability of any single individual surviving to age . Let the observa-
tion vector of a single experimentbe T = (¢, 5, . . . , ty ), where ¢, is the time of death
of the ith individual.
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Methods of estimation

There are several approaches that have been taken to estimating the values of A and
a from eq. (1). Here, we briefly review four of these methods.

Linear regression. These methods used by Brooks ef al. (1994), Hughes and Charles-
worth (1994), Promislow (1991), Tatar and Carey (1994), and others works with the log
transformed version of eq. (1),

In(u(s)) = In(A) + at. 4

To estimate the dependent variables in (4), observations of mortality are divided into
discrete intervals. The number of deaths in each interval is used as an estimate of ().
For instance, to estimate u(f) from the number of survivors the following approximation
is generally used,

u(t) = —In(P) = —1n<N’“> (5)
t Nt .

The length of the time intervals used must be large enough to include at least one
observed death. This technique implicitly assumes that «(¢) does not change in the
interval ¢t to t+ + 1 which, of course, is contrary to the form of eq. (1). Such an
approximation can only be expected to work if the time interval is very small.

Nonlinear regression. This method will find values of A and «, as the parameters that
minimize the residual sum of squares below (Gavrilov and Gavrilova, 1991; Hirsh et al.,
1994),

No—1

S (M=) - 2 (6)
n N, np,

i=1

which can be found using standard numerical search algorithms (Marquardt, 1963). The
last death is not utilized in the estimation process, because eq. (6) is undefined in that
single case. Using natural logarithms reduces the chance of obtaining numerical over-
flows during the search of the A — «a space for the least-squares solutions because the
logarithm of p, is invariably a smaller number (either in absolute value or in its expo-
nent) than p,.

Maximum likelihood with approximation. To describe the likelihood function (Fukui
et al., 1993) we first note that the last death among a cohort of N, individuals is on day
ty,- Thus, we can also record the number of deaths on each day as,

Let g(1) be the probability that an individual that lived to day 7, dies by time ¢ + 1,
then the likelihood function can then be defined as,
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i=tng

L= H (g1 — g4 .

i=1

Equation (7) is then evaluated assuming that —In(l1 — g(f)) = Aexp(af), which is
formally the same as eq. (5). The likelihood function follows from the assumption that
the number of deaths (d,) on day / is a binomial random variable with probability g(i).

Maximum likelihood. The most accurate application of the maximum likelihood tech-
nique would be to use eq. (7), estimating g(r) as 1 ~ p,,, (p) ' from eq. (3).
Important results derived from the Gompertz equation

Because p, is the chance of surviving to time 7, the chance of an individual dying
before time ¢ is simply,

Prob(t;,<1t) =1 - p, ®

If we view the time of death as a random process, then 1 — p, is the distribution
function (which by definition is Prob(s; < 1)) of this process. Further, the density
function can be derived as,

o - ol — p) e A(l — exp(at)) o o
) B ot - xp a «
The Gompertz equation then yields as an estimate of the mean longevity,

ﬁ) * findt. (10)

In addition to the mean longevity, the time (1) by which some critical fraction (B) of
the population is expected to be dead may be calculated from eqs. (3) and (8) as

B ln[l B L ln(114— B)}

g = . (11)

Bootstrap

The bootstrap is a numerically intensive technique for making statistical inferences
(for a recent review, see Efron and Tibshirani, 1993). It is usually reserved for problems
that are not readily solved by traditional statistical theory. The success of the bootstrap
depends on the recognition that the actual sample may be used as an empirical estimate
of the true distribution of the underlying random variables. From this empirical distri-
bution, multiple samples may be drawn and the behavior of the statistics of interest
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observed in these samples. A crucial, but nontrivial, component of the bootstrap is the
use of a proper sampling scheme from the original observations. For the mortality data
used in this article, there are at least three different ways of sampling: sampling indi-
viduals, sampling residuals, and sampling the stochastic process. Because preliminary
work suggested that only the last of these methods worked well, we discuss it in more
detail below.

Sampling the stochastic process. This process involves using the estimated values of
A and « from the original data to estimate the probability of surviving to each census
point. For the data analyzed here, populations are checked at daily intervals for deaths.
The chance of an individual dying between day x and day x + 1 is given by,

&x=1—<%>,x=1,2,....m
X

and the “*hat”’ indicates that estimates of A and « have been substituted in eq. (3). The
original N, individuals are then followed through time. On day I, a random number with
a uniform distribution on (0,1) is chosen for each of the N, individuals. If the number
is less than «, that individual dies; otherwise, it lives. The process is repeated for the
survivors at day 2, 3, . . . until N, deaths are recorded. The whole process of generating
N, deaths is repeated m times. The behavior of these m replicate data sets can then be
used to make statistical inferences such as confidence intervals.

Confidence intervals. The “‘BC,”” method (Efron and Tibshirani, 1993) is used for
generating confidence intervals. With this method, the m values of the statistic of
interest are ordered from smallest to largest. The lower 100a,th percentile of these
order statistics is used for the lower confidence limit and the 100a,th percentile for the
upper limit. Where,

5 (o) 5 (1-a)
R 20tz . ptz
()L]ZCD Zo+4‘_—,\A ,a2=(bz+ o~ —
( 1 — alzy + Z(a))> 0 1 —az + ! 0())

®(-) is the standard-normal cumulative distribution function, and z'® is the 100ath
percentile of a standard normal distribution. If x is the fraction of all bootstrap esti-
mates of the statistic that are less than the original estimate, then,

3y = ® (Y.

Efron and Tibshirani call 4 the acceleration parameter, which is estimated from the
jackknife. Under the assumption that the statistic of interest has a normal distribution,
the variance of that statistic will be the same no matter what the true value is. In
practice, the variance may, in fact, change for different population values of the sta-
tistic and require correction. The acceleration parameter helps to achieve this correc-
tion.

The acceleration parameter is computed from the following relationship,
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. E (E - SI')3
“T6EG - )T

where s; is the ith pseudovalue computed by deleting the time of death for the ith
individual from T and finding the maximum likelihood estimates of A and « from eq. (7).
Because there are N, points in T, there are N, pseudovalues whose mean is 5.

Simulated data sets

To test the accuracy of the estimates provided by egs. (10) and (11), as well as the
bootstrap confidence intervals, computer simulations were conducted. The first step in
these simulations was to generate samples from a simulated population with Gompertz
mortality rates. These samples consisted of the recorded day of death for each of N
individuals (where N = 50, 100, or 150). We assumed that the population was checked
at daily intervals for new deaths. For a fixed combination of A and o, we computed the
probability of surviving to time ¢ as p,, from (3). Suppose there are N, surviving adults
at this time. The chance of surviving to time 7 + 1 is p,, . Thus, the probability of
dying, u,, between day ¢z and day ¢+ + 1is 1 ~ (p,. ,/p,). For each of the N, survivors,
a uniform random number from (0,1) was chosen. If the number was less than «,, then
the individual died on day ¢ + 1; otherwise, the individual lived. This process was
repeated until all N adults had died. For each of the three sample sizes, 1000 artificial
data sets were created by following the sampling scheme just described.

With each of the 1000 data sets, the techniques described in the previous section were
used to estimate A and «. From these estimates of A and «, the mean longevity, ¢, s, ty 7,
199, and ¢, 45 Were calculated.

In general, we would like to minimize the variance and bias of estimators. We are
also interested in investigating the ability of the Gompertz model to predict these
statistical quantities, when only a fraction of the data set has been used. As a means of
studying this problem, only portions of the artificial data sets were used to carry out the
estimation process. In particular, we utilized the first 20, 35, and 50% of each of the data
sets to estimate A and a.

Empirical data sets

To illustrate the methods described here and determine if there are differences in the
ability of each demographic model to describe real data, we have applied these methods
to 20 cohorts of Drosophila melanogaster. These populations have been subjected to
age-specific selection (Rose, 1984) and are of two treatment types: O, selected for late
life reproduction; and B, selected for early life reproduction. There are five replicates
of each type (e.g., B, B,, . . ., Bs) and data has been collected separately for males
and females. Previously we have shown that the Bs and Os differ in demographic
parameters, including their ‘‘rates of aging,”” o (Nusbaum e¢ a/., submitted).

Numerical methods

Numerical integration of eq. (10) was performed by a modified Romberg integration
procedure, using the Pascal procedure QROMO described in Press et al. (1986). The
upper limit to this integral must be set to reasonable limits; otherwise, calls to the
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Gompertz density functions may result in numerical overflows. One convenient way to
estimate a reasonable upper limit is to use eq. (11) and set B to 0.9999. In general,
whatever limit is chosen must also be used in any bootstrap procedure to avoid sys-
tematic bias. The maximum of the likelihood function was found numerically with a
downhill simplex method (Press et al., 1986). This method does not require finding the
derivatives of eq. (7), which would be an onerous task for the full Gompertz equation.

Random numbers were calculated with the RAN3 function (Press et al., 1986). This
function uses two calls to the random number generator for each number produced. The
first call picks a random cell in an array of random numbers, while the second call
replaces the random number chosen by the first call. Although slower than a procedure
that simply generates a single number per call, RAN3 effectively increases its cycle
time by the square of the cycle time of the source generator. Of course, the longer it
takes the random number generator to cycle, the less likely it is that cycles will induce
correlations in the observations. The normal distribution function was approximated by
the polynomial expansion in Johnson and Kotz (1970).

RESULTS
The instantaneous death rate approximation

As mentioned earlier, a number of studies (Tatar et al., 1993; Brooks et al., 1994,
Tatar and Carey 1994) utilize the approximation in eq. (5). Using the notation developed
in this article, it follows that,

_ Nopis1 _

A
Nop: exp - [(1 — exp(alr + 1)) — (I — explar)]|.

P,
After some algebra, one can show that,
A
~In(Py) = = [explar)expla) — DI. (12)

The right side of eq. (12) will equal the Gompertz equation (1) only if we use the
approximation that e* = 1 + a.

More generally the probability of surviving over a single time interval is sometimes
estimated from the geometric average of observations over many time intervals, e.g.,
P = PPy Py V% In this case, it can be shown that the approximation u(r)
= —In(P) depends on the accuracy of the approximation e** = 1 + ka.

Clearly, the accuracy of these approximations will depend on the time interval used
and the value of a.

For instance, many of the Drosophila populations examined in this article have an o
close to 0.1. In this case, when eq. (5) is used on daily observations of mortality, the
difference between the approximation and the true value is only 0.5% of the true value.
However, if eq. (5) had been used on weekly data, the difference between the true value
and the approximation would be 16% of the true value. The reason this problem arises
in the first place is that the Gompertz model assumes that mortality rates change
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continuously with time, while methods for estimating mortality from survival data can
only do so over finite time intervals. The larger the time interval, the worse the ap-
proximation. Because there are essentially no problems that can’t be solved with the
full Gompertz model without this approximation from eq. (5), we see little value in
using it given the potentially large errors that can result.

Methods of estimation

Four different methods were described above for estimating the two parameters of
the Gompertz equation. Here, we examine the ability of each method to provide ac-
curate estimates of A and «. To do this, we created 1000 computer-generated data sets
from the Gompertz equation with A = 0.00113 and o = 0.0928. These values were
chosen to be close to values we have observed in our Drosophila populations. For each
of these data sets, the values of A and a were estimated from each method. For each
technique we then determined the bias, variance, and mean square error (= variance
+ bias?) (Bickel and Doksum, 1977).

The results (Tables 1-2) show that in general the maximum likelihood method was
best, and the linear regression technique the worst. Thus, the maximum likelihood
method without approximation had smaller variance and bias (and, thus, smaller mean
squared error) relative to all other methods. Using eq. (5) with maximum likelihood,
even when the time intervals were only one day, increased both the variance and bias
of the estimator relative to the maximum likelihood without this approximation.

TABLE 1. THE STATISTICAL PROPERTIES OF SEVERAL METHODS FOR
ESTIMATING THE PARAMETER A OF THE GOMPERTZ EQUATION AT THREE
DIFFERENT SAMPLE SIZES

Variance Mean square
Method Sample size Percent bias (x10°) error (x10°)
LR 50 991 28500 153000
100 885 14800 116000
150 843 11600 102000
NR 50 42 1010 1240
100 31 460 584
150 21 296 355
MLA 50 2.9 33 4.3
100 2.5 1.5 2.2
150 2.4 1.0 1.8
ML S0 1.4 3.1 3.3
100 1.0 1.4 1.5
150 0.9 1.0 1.1

Methods studied include: linear regression (LR), nonlinear regression
(NR), maximum likelihood utilizing an approximation to the Gompertz
function (ML.A), maximum likelihood utilizing the exact Gompertz (ML).
Mortality rates were measured at weekly intervals in the linear regression
analysis, while daily intervals were used for the other three methods.
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TABLE 2. THE STATISTICAL PROPERTIES OF SEVERAL METHODS FOR
ESTIMATING THE PARAMETER a OF THE GOMPERTZ EQUATION AT THREE
DIFFERENT SAMPLE SIZES

Variance Mean square
Method Sample size Percent bias (x10%) error (X10°)
LR 50 19 96 419
100 19 60 357
150 18 47 322
NR 50 5.9 251 282
100 5.9 126 155
150 4.4 93 109
MLA 50 29 22 29
100 2.5 9.9 1S
150 2.4 6.9 12
ML 50 1.4 21 22
100 1.0 9.4 10
150 0.9 6.5 7.3

Methods studied include: linear regression (LR), nonlinear regression
(NR), maximum likelihood utilizing an approximation to the Gompertz
function (MLA), maximum likelihood utilizing the exact Gompertz (ML).

Bootstrap confidence intervals

Utilizing the data sets described in the previous section we have tested the accuracy
of 95% confidence intervals produced from the bootstrap and maximum likelihood
techniques. For each sample, a bootstrap confidence interval was created for mean
longevity, fs5q, t7g, teg. and tys. We then noted if the interval included the true value or
not. The results of these simulations (Table 3) show that the confidence levels of these
intervals are very close to the nominal value of 95%.

Simulation results

We also simulated a population with A and « values similar to those in B populations.
With the simulated data sets, we estimated the statistics of interest with only the first
20, 35, and 50% of the data. The effects of using different fractions of these data sets and

TABLE 3. THE EMPIRICAL CONFIDENCE LEVEL FOR
THE 95% BOOTSTRAP CONFIDENCE INTERVALS
GENERATED BY THE STOCHASTIC
SAMPLING TECHNIQUE

Longevity tsp tyy top tos

96.5 96.5 96.6 96.8 96.5

The sample size was 150 and only 50% of the data were
used. Preliminary work with jackknife confidence in-
tervals gave very poor results with this example;
hence, it has been used as the test case for the boot-
strap.
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different sample sizes of individuals are shown in Fig. 1 for the variance in mean
longevity, 4, s, t5.7, to.9, and #; os.

The variance of these estimators clearly decreases with increasing sample size and
increasing fractions of the data (Fig. 1). But the shape of these curves is, in fact, very
similar for each statistic, suggesting a common numerical response to the size of the
data sets used. Empirically, we can estimate from Fig. 1 that the variance of these
estimators is decreasing in proportion to N, if N is the total sample size.

The effects of the fraction of the data used are more complicated. For instance,

20
Initial Cohort Size

15 e 50
® 100
A 150

Var(Longevity)
)

Var(50%)

Var(90%)

02 03 04 05 02 03 04 05
Fraction of Data Used

Fi1G. 1. The variance of several demographic statistics as a function of (i) the initial size of
the cohort and (ii) the fraction of all deaths that were observed prior to estimation of the
Gompertz parameters.
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inspection of Fig. 1 shows that the drop in variance in mean longevity from 20 to 35%
is about the same for each sample size (50, 100, 150). In addition, the decrease in
variance from 35 to 50% of the data is about the same as the decrease seen from 20 to
35%. In general, the variance depends on both the fraction of data used and the sample
size.

Application to B and O data

The Gompertz equation was used with mortality data (Figs. 2-3) from the B and O
populations to predict the mean longevity and ¢, o5 (Tables 4-5). In addition, bootstrap
confidence intervals were calculated utilizing the stochastic sampling technique. For
each population in Tables 4-3, these estimates are made with various fractions of the
initial data set: 100, 50, 35, or 20%.

Examination of the size of the confidence intervals in Tables 4-5 shows that often
there are only small increases in interval size with decreasing fractions of the data used.
This is especially so when moving from 100 to 50% or 50 to 35%. Although we do not
know the true mean longevity of these populations, we can use the observations to
estimate the mean and a confidence interval. The confidence interval on these observed
longevities almost always overlaps the confidence interval of the predicted longevities.

We have also enumerated the number of deaths that exceed ¢, 45 (Table 6). Because
we have different estimates of A and « for each fraction of the data used, we also get
different values of ¢, 45 in each case. Accordingly, we have counted the number of
deaths that exceed each of the different ¢, 45. Because the sample sizes were small, we
pooled all counts from like sex and population. In 15 out of 20 comparisons the ob-
served number of deaths in this tail of the distribution is within the expected 95%
confidence interval (these are exact confidence intervals computed from the binomial
distribution). To evaluate these results, it is important to remember that the value of
15 95 is, itself, an estimate. Had we looked at the performance of the Gompertz using the
range provided by the 95% confidence intervals (Tables 4-5) on ¢, 45, the level of
agreement would have been much better.

These results suggest that considerable savings in time and energy may be achieved
by computing the expected size of these confidence intervals ahead of time for various
combinations of N and fraction of data used. This can be done with the techniques
outlined here if one can make a reasonable guess at A or «. If this cannot be done, a
range of A and « values might be examined. Estimates of A and a can be obtained if one
has estimates of two values of . If the values of B used are not very close (e.g., 50 and
90%), then estimates may be obtained by numerically solving the systems of nonlinear
equations that result from eq. (11), using techniques like the method of bisection or
Newton’s method (Philips and Taylor, 1973). This technique is also useful for estimat-
ing the starting values of A and o when doing maximum likelihood.

DISCUSSION

Our first conclusion is that the linear regression methods typically used to estimate
parameters of the Gompertz do not work well and should probably never be used. The
estimates obtained by linear regression depend on unstable features of the data set,
which make them useless for comparison across populations. These problems can be
easily avoided by using the maximum likelihood techniques described here. The max-
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FIG. 2. The survival of females in the B and O populations.

imum likelihood method, however, assumes sampling is binomial. This is a reasonable
assumption for the laboratory populations studied here, but may not be justified in
other circumstances. Clearly, appropriateness of this assumption must be evaluated on
a case-by-case basis.

For populations in which the Gompertz equation appears to work well, estimates of
mean longevity, 7y s, %099, €tc., can be made by observing the first 20% or so of all
deaths. Confidence intervals on these estimates may be made as small as desired by
simply increasing the initial cohort size. The design of experiments can be aided by first
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F1G. 3. The survival of males in the B and O populations.

making a guess at A and « for the population of interest. Following the bootstrap
process outlined here, estimates of the size of confidence intervals for any of the
important statistics that follow from the Gompertz equation can be made. The effects
of initial cohort size and fraction of the data examined can be easily evaluated with
these techniques to ascertain the most efficient manner to collect mortality data.

For populations that do not obey Gompertz mortality kinetics, the techniques in this
article can be easily modified. For instance, Carey er al. (1993) suggest that medflies
violate crucial assumption of the Gompertz equation. Hirsh et al. (1944) describe sev-
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TABLE 4. THE MEAN LONGEVITY AND T g5 FOR B AND O FEMALES (WITH BOOTSTRAP 95% CONFIDENCE

INTERVALS CALCULATED WITH THE STOCHASTIC SAMPLING TECHNIQUE)

Observed
Initial longevity
Population cohort size Percent data (£95% C.1.) Mean longevity tp.gs
B, 46 100 43 + 4 43 (41,44) 60 (57,62)
50 43 (39,46) 60 (53,66)
35 43 (37,48) 60 (50,68)
20 42 (36,52) 59 (46,75)
B, 43 100 34 £3 32(31,33) 46 (44,48)
50 33 (31,31 49 (43,57)
35 36 (33.43) 55 (45,69)
20 38 (34,53) 58 (47,91)
B; 43 100 4 £ 3 41 (40,43) 59 (56,61)
50 40 (36,43) 56 (49,61)
35 41 (37,48) 59 (51,71)
20 44 (38,57) 64 (50,88)
B, 49 100 42+ 4 40 (39,42) 53 (51,55)
50 43 (40,47) 56 (52,62)
35 42 (38,46) 55 (49,60)
20 44 (38,50) 58 (49,67)
B 49 100 42 * 4 39 (38,42) 65 (62,74
50 39 (37.4%) 64 (56,90)
35 39 (35,45) 56 (47,67)
20 38 (33.,46) 56 (44,72)
0, 46 100 =S 71 (68,74) 98 (93,102)
50 72 (66,77) 96 (87,104)
35 73 (64,81) 96 (83,109)
20 78 (68,102) 114 (91,161)
0, 56 100 726 66 (64,70) 102 (97,112)
50 69 (64,74) 92 (85,99)
35 64 (58,77) 99 (83,127)
20 85 (46,143) 148 (83,447)
0O, 49 100 74 =7 69 (66,72) 110 (104,119)
50 70 (66,82) 113 (97,148)
35 71 (63.80) 98 (85,113)
20 71 (61,85) 98 (81.121)
0O, 55 100 80 =5 76 (74,79) 109 (104,114)
50 77 (71.85) 110 (99,125)
35 73 (65,83) 103 (89,120)
20 79 (68,98) 115 (91,150)
O, 45 100 73 x5 70 (67,73) 95 (90,99)
50 71 (65.76) 96 (86,105)
35 74 (67.87) 102 (90,124)
20 76 (65.95) 105 (87,136)

eral two parameter models that appear to provide much better descriptions of medfly
mortality kinetics. All the techniques described here can be used easily with these other
models. In fact, one simply has to replace two lines of computer code in all the pro-
grams used in this article to compare equivalent results for the JMA and gamma models
described by Hirsh et al. (these programs are available from the authors upon request).
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TABLE 5. THE MEAN LONGEVITY AND T g5 FOR B AND O MALES (WITH BOOTSTRAP 959 CONFIDENCE

INTERVALS CALCULATED WITH THE STOCHASTIC SAMPLING TECHNIQUE)

Observed
Initial longevity
Population cohort size Percent data (+95% C.1.) Mean longevity ty.95
B, 51 100 S0 =3 49 (47,51) 65 (62,68)
50 49 (45,52) 65 (59,71)
35 47 (41,50) 61 (54,67)
20 47 (40,54) 63 (51,73)
B, 46 100 48 = 3 46 (44 48) 63 (61,66)
50 47 (44,53) 65 (60,75)
35 47 (43,55) 65 (58,79)
20 50 (42,63) 70 (55.93)
B, 43 100 St =2 50 (49,52) 60 (58.61)
50 51 (49,54) 61 (58,64)
35 51 (48,54) 61 (56,64)
20 52 (47,56) 62 (55,67)
B, S2 100 50 £ 3 45 (44,47) 65 (62,68)
50 46 (42,51) 67 (59,75)
35 48 (43,55) 71 (57,83)
20 48 (42,69) 70 (56,111)
Bs 46 100 50=2 49 (47.51) 60 (58,62)
50 50 (48,53) 61 (58,65)
35 52 (48.55) 63 (58,68)
20 49 (43,54) 59 (52,66)
0, 51 100 85 =6 78 (75.80) 117 (110,121)
50 78 (72,87) 116 (103,136)
35 83 (76,102) 128 (109,170)
20 97 (91,189) 157 (132,366)
0, 33 100 80 =5 78 (75,81) 106 (102,111)
50 81 (75,88) 112 (101,124)
35 82 (74,92) 113 (101,131)
20 80 (69,97) 110 (91,139)
0O, 43 100 88 = 8 84 (81,86) 123 (117,128)
50 80 (73,89) 117 (103,133)
35 90 (81,109) 135 (114,175)
20 82 (71,112) 119 (96,177)
0, 48 100 87 6 96 (94,99) 114 (111,118)
50 83 (78.86) 98 (93,102)
35 84 (80,89) 100 (95,105)
20 87 (81,94) 103 (95,112)
Os 46 100 94 =6 100 (97,105) 126 (122,133)
50 88 (84,95) 110 (104,119)
35 87 (81,96) 108 (100,119)
20 83 (74,93) 104 (92,116)

Not all populations will be expected to obey the Gompertz equation. Nor do we
expect the Gompertz to work well in the very old age classes, in which natural selection
has not been an effective force at molding rates of mortality (Nusbaum, Mueller, and
Rose, submitted). Nevertheless, for populations that are relatively long-lived and fol-
low Gompertz mortality curves, or some other simple mortality kinetic model, sub-
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TABLE 6. THE FREQUENCY OF B AND O DEATHS THAT EXCEED T o5 COMPUTED FROM EQ. (11)

95% C.1. on the Percent of the data Observed number

Total number of  observed number used to estimate of deaths
Population Sex observed deaths of deaths > t, g5 to.05 > to.os
B M 238 (5,19) 100 11
50 8
35 9
20 13
B F 230 (5,18) 100 15
50 10
35 13
20 12
¢} M 241 (5.19) 100 19
50 30
35 23
20 30
0O F 251 (6,19 100 16
50 21
35 23
20 9

Although all populations have been pooled the particular ¢, from each population was used in these
calculations.

stantial savings in estimating longevity could be achieved by applying the methods
presented here.
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