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Conditions that permit the success of a genotype that increases the fitness of
relatives while suffering a reduction of its own were first suggested by Hamilton
(1964a, 1964b). If r is the probability that a relative carries that same ‘‘altruistic’’
allele as the altruist (i.e., the coefficient of relatedness defined by Crozier [1970])
then these alleles will be favored if the loss in fitness suffered by altruists, vy, is
more than compensated for by the gain in fitness to the recipients, 3, multiplied by
the coefficient of relatedness, r:

Br>n. (1)

These ideas were later developed as single-locus two-allele population genetic
models by several authors (Charnov 1977; Charlesworth 1978; Wade 1979; see
Michod [1982] for a review). These models, which essentially confirm Hamilton’s
basic results, all assume that adults occur in Hardy-Weinberg proportions. We
call these models inclusive fitness models. Clearly, if the types of interactions
subsumed by altruism occur among pre-adults and these interactions affect viabil-
ity, then adults will not be in Hardy-Weinberg proportions. Consequently, exact
models of kin selection have been developed that do not assume Hardy-Weinberg
proportions among the adults (Levitt 1975; Cavalli-Sforza and Feldman 1978;
Uyenoyama and Feldman 1981; Uyenoyama et al. 1981). If selection is weak then
adult genotypic proportions will not deviate substantially from Hardy-Weinberg
proportions (Charlesworth 1980). Although inclusive fitness models can provide
approximations to the dynamics of genotypes under the appropriate conditions, it
should be emphasized that the difference between the inclusive fitness and exact
models is not merely in the quantitative prediction of genotype frequencies each
generation. As shown by Cavalli-Sforza and Feldman (1978) the loss and gain
components of fitness must be combined in an additive fashion to recover any of
Hamilton’s results. Even with an additive formulation, however, exact models
yield initial increase conditions that differ from equation (1) (using Crozier’s
definition of r) if altruism is directed from sister to brother or sister to any sibling
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and the genetic system is haplodiploid (see also Uyenoyama and Feldman 1981).
For single-locus models there exist two classes of polymorphic equilibria we have
named viability analogous and structural (Uyenoyama and Feldman 1981; Uy-
enoyama et al. 1981; Toro et al. 1982). In inclusive fitness models only the
viability-analogous equilibrium can be extracted (as in Michod and Abugov 1980).

Despite the fact that exact analysis and the Hardy-Weinberg assumption both
predict the existence of the viability-analogous equilibrium, the conditions for its
stability are quite different in the two treatments. For instance, Michod and
Abugov (1980) show that for a diploid, sib-sib inclusive fitness model the viability-
analogous equilibrium will be stable if 3/2 > v and there is overdominance in the
propensity to be ‘‘altruistic.”” Using equation (52) of Uyenoyama and Feldman
(1981), the viability-analogous equilibrium can be stable locally either if (1) /2 >«
and there is underdominance in altruism or if (2) /2 < vy and altruism is over-
dominant.

If relatedness is defined as the regression of the additive genotypic value of the
recipient on the altruist, b4 (see Uyenoyama et al. [1981] for definition), then
equation (1) can be rewritten as 8b,_.xr > ~v. This condition accurately describes
the initial increase of altruistic alleles. In cases in which altruist and recipient
differ in sex, the above condition must be modified by the mean fitness of each
sex. The viability-analogous equilibrium corresponds to the condition when the
variance of the additive genotypic value is zero (Uyenoyama et al. 1981). In
addition the structural equilibria were shown to satisfy by g = v.

In this paper we continue our development of a population genetic theory of kin
selection by examining a two-locus, two-allele model. There have been two
previous two-locus Kin-selection models by Wade (1979) and Aoki and Moody
(1981). Wade’s model made the Hardy-Weinberg assumptions and assumed the
two loci were in linkage equilibrium. Thus all the complicating effects of linkage
were ignored. Aoki and Moody (1981) studied the origin of worker behavior in the
Hymenoptera and consequently used a rather detailed life history which limits the
generality of the model. In this paper we use analytic and numerical methods to
study the behavior of some exact two-locus models of sib-to-sib altruism near
certain fixation states and at internal polymorphic equilibria. The behavior of
these two-locus kin-selection models is compared to their viability selection
analogs. We see a number of similarities between the single-locus kin-selection
models and the two-locus models and point out important cases in which Hamil-
ton’s conditions at a single locus are misleading when interpreted for two loci
simultaneously.

PHENOTYPIC KIN-SELECTION MODEL

We assume adults mate at random and that the population size is infinite.
Altruistic interactions are between full sibs. The altruistic behavior of interest is
assumed to be under the control of two linked autosomal loci with two alleles (A,
a; B, b). Associated with the performance of each altruistic act is a loss in fitness
proportional to v; likewise, recipients of altruism experience an increase in fitness
proportional to B. Genotypes are characterized by their probability of being
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altruistic. In this model these probabilities take on three values, kg, A, or ks,
depending on whether an individual is heterozygous at 0, 1, or 2 loci. Because of
this simple characterization of altruistic genotypes we call the model phenotypic
kin selection by analogy to the two-locus viability models (LLewontin and Kojima
1960; Karlin and Feldman 1970a; Karlin and Liberman 1976). The &’s for the 10
two-locus genotypes are given below.

AB Ab aB ab

AB ho hy hy hy
Ab ho hy hy
aB hy h,
ab ho

The net fitness of each genotype is composed of two components which we have
described previously as the loss and gain. As first discussed by Cavalli-Sforza and
Feldman (1978), even if these components are assumed to be independent there
are still at least two natural ways in which they can be combined, additively or
multiplicatively. In the model treated here fitness will be computed in an additive
fashion. Our reasons for this are twofold. (1) The original formulation of kin
selection (Hamilton 1964a, 1964b) and the majority of subsequent elaborations of
these ideas (see Michod [1982] for review) correspond most closely to the additive
assumption. (2) We have previously developed the equilibrium theory for single-
locus exact population genetic models of kin selection most extensively for
additive models (Uyenoyama and Feldman 1981; Uyenoyama et al. 1981; but see
Uyenoyama and Feldman 1982).

It was pointed out previously (Cavalli-Sforza and Feldman 1978; Uyenoyama
and Feldman 1981; Uyenoyama et al. 1981) that proper accounting of the dynam-
ics of kin-selection models must be in terms of genotype frequencies since the
randomly mating adults are not in Hardy-Weinberg equilibrium. As emphasized
most recently by Feldman and Eshel (1982), the difference between these exact
population genetic models and those that use gene frequencies under the implicit
assumption of weak selection (see, e.g., Charlesworth 1980) can be qualitatively
important.

To construct the basic genotype recursions needed for this model, the probabil-
ity that each genotype has an altruistic sib must be specified in addition to the
parameters vy, 3, and A;. Index the four chromosomes AB, Ab, aB, and ab by 1, 2,
3, and 4. Then the frequency of chromosome 1 is x; and the frequency of genotype
ij will be represented by g; with f; the joint probability of being genotype ij and
having an altruistic sib (see Cavalli-Sforza and Feldman 1978). With this notation
the 10 single-generation genotype recursions are

Wg'y = % (1 — vho) + Bfis (2a)
Wg'a = 255 (1 — vhy) + Bfia, " (2b)
We's = 2586 (1 - viy) + Bfis, (2¢)
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Wghs = 255 (1 — vha) + Bfis, (2d)
Wgh = 23 (1 = vho) + Bf, (2e)
Wghs = 25203 (1 — yhy) + Bfas, (2f)
Wghy = 2084 (1 = yhy) + Bfaa (2g)
Wg's = 23 (1 = vho) + B, (2h)
Wehs = 28385, (1 — yh) + Bfaa, (21)
Wgly = %5 (1 — vho) + Bfas, (2

where

X = x; + rLl2,
Xy = xo — rLI2,
X3 = x3 — rLf2,
X4 = x4 + rLI2,

L = gy — gus

ris the recombination fraction, and W is a normalizer equal to the sum of the right-
hand sides of (2).

To calculate f;; we must first determine the frequency of offspring from all 55
possible matings of the two-locus genotypes. Then from each family where
genotype ij occurs, the contribution to f; can be added to all previous contri-
butions. Thus, for instance, the contribution to fi, from the 23 x 23 family is
g r(l — DR [P + (1 — 2] + W21 — P] + W[F2 + (1 — r*2]}. To this
term are added similar values from all families which produce AB/Ab offspring. It
should be noted that each f;; expression will contain terms multiplied by A, #;, and
hy. For simplicity, table 1 contains the f; expressions grouped as coefficients of 4,
hl’ and hz.

The analysis will focus on three general topics. First, conditions for the evolu-
tion of new gamete types or alleles from a ‘‘corner’ equilibrium, i.e., where the
population is fixed for one chromosome only, will be determined. Second, we
examine the case where one locus is at a stable polymorphic equilibrium with the
second locus fixed, and determine the conditions which allow for the increase of a
new allele at the second locus. Third, we look for internal equilibria at which all
four chromosomes are segregating.

Stability of a Corner Equilibrium in the Symmetric Model: Increase of
Altruistic Chromosomes

Suppose the population is fixed for the genotype AB/AB. The conditions for
stability of this equilibrium to the introduction of Ab, aB, and ab are obtained
from the dynamics of the three rare genotypes, AB/ab, AB/aB, AB/Ab in the
neighborhood of the equilibrium point g;;, = 1.



TABLE 1

JOINT PROBABILITIES, fy;, OF BEING GENOTYPE {j AND HAVING AN ALTRUISTIC SiB. EACH f;; Is THE Sum
oF THREE TERMS GIVEN BELOW, WHICH ARE MULTIPLIED BY /g, /i,, AND fia, RESPECTIVELY. THE

FoLLowING IDENTITIES ARE USED THROUGHOUT:

L=gn—8uU=gu?+gnll =N\ M=gn+gu.V=gul — )+ gy

hy Terms

S = gnlx, + g4 + gu2gn + 12 + gialgis + g8 + rligix + g13)8 + gy, V12
+ (1 — 2 MY8 + V318

f2 = gialxa + g22)/4 + 8222822 + £24)/2 + g24(g23 + £24)/8 — rLi(g12 + 820018 + g2,UN2
+ (I — P’r*M%8 + U8

fis = gl + g33)/4 + 2332831 + £34)/2 + gay(ga + £14)/8 — rL(giz + g14)/8 + g33UN2
+ (1 — N*FM8 + U8

Saa = gralxy + guld + 854(2844 T 83aM2 + galgia + 838 + rL(g24 + £34)/8 + g4 V12
+ (1 — rPM8 + V8

fio = galxg + x2 + g + gz:)/4 + (813823 + 81482408 + rL(gas — 20308 + (1 — rrM{gy,
+ gn + M[( — 1N + F12}2

Siz = gl + x5 + g + 8nlA + (812823 + 8148348 + rL(gss — £12)8 + (1 — NrM{g,
+ g+ MU — r)? + F)2}02

fia = {8281 + g20) + 813(g1a_t+ g34) + 814(824 + 238 + rLigir + gaa + g3 + £3/8
+ Vign + g4d/2 + (1 — 2P’ M4 + V4

Sz = [gaalgas + g20) + 823(8127"; 824) + 813812 + 2218 — rl(ga + g3 + g2 + £34)/8
+ Ul(gas + 23302 + (1 — N MY4 + U4

fra = gaalxa + x4 + goo + g44)/4 + (812814 + £23834)8 + rL(g12 — £3/8 + (1 — NrM{gs
+ gas + MIU — P + Fl2M2

fra = gaalxs + x4 + 833 T ga)d + (213814 + £23824)8 + rL(gy; — g24/8 + (1 — NirM{gs
+ gaa + M1 — 1)* + 212}2

h, Terms

Ju = (82 + gi)x) + g1 + g/2V4 + rL(ga + g1/4 + K1 — NMQ2g,, + V)2

S = (812 + 20Xz + go2 + 22324 — rL(gys + 2204 + K1 — AMQgr + U2

fiz = (8in + 8:3(xs + gaz + 2a/2V4 — rLigiy + g2l + 1l — PMQ2gy + U2

Jaa = (824 + £30)(xa + gus + /D4 + rL(gay + g4 + 1l — PMQgss + V2

fiz = xa(g2 ‘fﬁglz)/z T g + g2 + 22002 + gialgi2 + €24 + rl(gay — g13)/4
+ (0 = M2+ g U + g V + UVR2

Sis = x3(gn2 + 212 + guldgn + g + 232 + g1l8us + £3)/d + rLigsy — g4
+ (L = rPM2 + g, U + gV + UVR2

fia = X2 + 302 + (12 + 81 (28ua + g1 + rL(gps + 213 + 824 + g1aMd
+ (= Mgy + gaa + V)

For = x2(gi3 + 8342 + (212 + 2202831 + 2304 — rL{gyy + g13 + gas + gaall4
+ (1 = rM(gs + gaa + U)

fru = x2(gaa + €342 + gasldg22 + g2 + 2202 + g14(€12 + g24)/4 + rL(g12 — 2344
+ (1 = rPrM22 + g2V + g, U + UVR2

Sra = x3(g24 + 23402 + gaaldgaz + 213 + 2342 + 21813 + g2V4 + rl(g13 — g24)/4

+ (1 — PPrPMY2 + gV + g U +

uvn

(continued)
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TABLE 1 (Continued)

h, Terms

S = (€283 + 813814 + 8218 + rL(giz + g8 + (1 — r** M8 + g, \VI2 + V*8
Srr = (812824 + 812823 + 8238248 — rL(gi2 + 2208 + (1 — N*r*M?8 + g, Ui2 + U*8
F3 = (1382 + €13834 + 2238308 — rL(gix + g3)/8 + (1 — )’ M8 + g3, U2 + U8

Saa = (214824 T 814834 + 224838 + rL(g2a + g32)/8 + (1 — PP M?8 + g, V2 + V218

Siz = gaalxy + g4 + gi3(x2 + gn)/4 + g M8 + rL(gas — £13)/8
+ (1 = NrM{2(gu + g22) + MU — 1 + rlH/4

Siz = gaalxy + g10)/4 + g1l + g3a)ld + gisM/8 + rL(gas — g12)/8
+ (1 = ArM{2(gy + g3) + MI(L — »* + FP1}/4

fia = (0 + gud(gas + g3d)/4 + gaaldg + g’127+"gl3)/2 + gix(gis + 834)/854' g13(g1a + £24)/8
+ rL(g> + g13 + 824 + £34)/8 + (I — A" M/4 + V(g + gaa)2 + V7/4

fz = (32 + g22Mgi3 + 234 + g33(482 + 812 + 2202 + £24(813 + £23)/8 + g12(g23 t+ g34)/8

FL(g1a + 813 + 824 + 238 + (1 — P*PMY4 + Ulgy + g33)2 + U*/4
foa = gaalxz + g22)/4 + gialxs + gaa)ld + §24M/§ + rL(g2 — g34)/8
(1 = rM{2(gy> + gaa) + MI1 — 1) + Y4

Sra = g2alxs + 23304 + gi3(xy + gudld + §'34M/78 + rl(gi3 — 2418
+ (0 — NrM{2(gss + gaa) + MI(1 — r)* + Fl}/4

+

The conditions for fixation of AB to be stable reduce to
(hy — ho) (B2 — v) <0, (3a)

and

(ha ~ ho)(1 = (B2 = ) — I + (B — V)hol
= A1 = NPthy + hy — 2h)2 < 0. (3b)

From these results we can see the first complications which make the evolution
of altruistic alleles in two-locus systems qualitatively different from the single-
locus models. Clearly (3a) corresponds to the stability of AB to the single-locus
perturbations, and if 4, > hg and /2 > v, (3a) fails and the corner equilibrium is
unstable, the usual one-locus result. If Ay > h; and B/2 > v, then single-locus
theory predicts that a or b alleles introduced separately at each locus will not
increase. For the full two-locus model, however, it is possible that even if a or b
introduced separately would not have increased, ab would increase if the double
heterozygotes were very altruistic. In other words if > > hy > h, and /2 > v then
(3a) holds but (3b) may not, and indeed, under these conditions, at » = 0 (3b) is
false. As r — 4, the left side of (3b) decreases although for extreme parameter
values it is possible that (3b) fails even at r = &. For s, > ho > hy and B/2 > vy there
will usually be some r* such that for all » < r* the AB fixation will be unstable.
However, if B > v and h, >> hy and h,, this equilibrium can be unstable for all
values of r. Clearly this requires nonadditivity of the alleles and genes contributing
to the 4’s. When B/2 > v, the eigenvalue corresponding to condition (3b) changes
monotonically over the range of r. Consequently, the region r € [0, 3] will contain
at most one critical value, r*, which separates stable from unstable fixation states.
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When /2 < v the situation is quite different. In this case it is possible for the AB
fixation to be locally stable when r = 0 and » = } but unstable for intermediate
values of r. Consider the following example: B = 1.9,y = 1.0,hy = 0,4, = 1, and
hy = 0.1. Equation (3b) predicts all fixations will be unstable if 5.6 x 10~ < r <
0.47 and otherwise stable. When this corner is unstable, numerical results have
shown the genetic system converges to a single-locus boundary equilibrium.
Single-locus theory predicts the local stability of the chromosome fixations so that
with single-locus theory alone we would conclude that the viability-analogous
equilibrium could be attained only with the help of some stochastic force, e.g.,
genetic drift, founder effect. A second epistatic locus enables this viability-
analogous equilibrium to be reached via a purely deterministic mechanism. Thus
an initially selfish population (ko = 0) can become more altruistic even when p/2 <
v. Of course this result depends critically on the rate of recombination.

Remark.—The conditions (3) are special cases of the analogous conditions for
general altruistic propensities, /;;. In general the conditions which ensure stability
of the AB fixation are

(hiz — h B2 — y) <0, (4a)
(his — (B2 — ) <0, (4b)
and
(hia — h)(B2 = (1 = 7) — ﬁ“_zi(h.l 4 hyy ~ hys ~ hys)

(4¢)
- HL + (B — vl <0.

These (and the special case [3]) are analogous to conditions for initial increase in
the sex-linked case found by M. K. Uyenoyama (personal communication).

Stability at One Locus: Increase of Altruistic Allele Linked to a Polymorphism

Consider now the case of a population that is at a stable polymorphic equilib-
rium for one locus, say A, and fixed at the second locus, B. We seek the
conditions for the increase of a new allele b at the second locus. In our previous
work on single-locus kin-selection models (Uyenoyama et al. 1981), we pointed
out that there are two possible classes of polymorphic equilibria which we called
viability analogous and structural. Allele frequencies at the viability-analogous
equilibrium are those calculated as if the #;’s were viabilities in standard viability
models of natural selection. In the present model the three genotypes AB/AB, AB/
aB, and aB/aB are altruistic with probabilities hq, 4, and hg, respectively. Thus
the frequency of the AB gamete at the viability-analogous equilibrium will be 3.
For single-locus, two-allele, sib-sib models of kin selection, Uyenoyama and
Feldman (1981) have shown that allele frequencies at the structural equilibrium
are solutions to a certain quadratic equation, but because of the symmetry
imposed by the present model there are no feasible allele frequencies that sat-
isfy their quadratic (Uyenoyama and Feldman 1981, eq. {51]) when $/2 > vy and
/’l] > h().
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To determine the fate of the b allele at the second locus we study the linearized
dynamics of the rare genotypes AB/Ab, AB/ab, Ab/aB, and aB/ab in the vicinity of
the viability-analogous equilibrium. It can be shown that if

_ 1 - 'Y(hl + hz)/z + B [2/’11 + (h() + hz)]/4
e = 1+ (B — Vo + h)2

is less than unity, then b cannot increase when rare for any recombination value,
while if w; > 1 it increases for all r < 3. Now p; < 1 if

(hy — ho)(B2 — v) <O, 6)

so that this result is independent of the recombination fraction. Condition (6) is
identical to that expected for a single-locus three-allele model; if the chromosomes
AB and aB are considered to be the segregating alleles and Ab (or ab) is the
introduced allele, then in the terminology of Uyenoyama et al. (1981) condition (6)
is the same as (k3. — ﬁ)(B/2 — v) < 0, namely, the condition for the protection at a
two-allele viability-analogous equilibrium against invasion by a third rare allele.

That (6) does not involve r is a consequence of the symmetry of this model
(Bodmer and Felsenstein 1967). In other two-locus models that do not have this
symmetry, the fate of new alleles at the second locus is quite complicated and
does involve the recombination fraction.

®)

Internal Equilibria

It is obvious from table 1 that the recursions 1 are quite complicated and
therefore the exploration of internal equilibria is liable to be a tedious task. This
can be simplified somewhat if we take advantage of the natural symmetry of this
model. With absolute linkage, genetic polymorphisms exist with either £, = £;, = %
or £, = %3 = 5. Polymorphisms of this kind, which entail maximum linkage
disequilibrium, have been termed high complementarity equilibria (Franklin and
Lewontin 1970; Feldman et al. 1974). With r = 0 these equilibria are special cases
of the four-allele model encompassed by the theory of Uyenoyama et al. (1981).
By a straightforward application of this theory, we see that the high complemen-
tarity points are stable at r = 0 (and hence, by continuity, for small ) when

B2>x (7a)
with
hy > hy (7b)
and
ho + hy > 2hy, (7¢c)
or when
B2 < v (8a)
with

hy < ho (8b)



TWO-LOCUS KIN SELECTION 543

and
hy + hy < 2h,. (8¢c)

Thus at r = 0 the altruistic propensities in this two-locus system, as special cases
of the one-locus model, exhibit the properties of two-locus fitnesses (see, e.g.,
Karlin and Feldman 1970b).

In view of the symmetry assumptions on Ay, i;, h, it is natural to attempt to
transform the genotype frequencies g; into new coordinates that facilitate the
analysis. A natural system used by Feldman and Liberman (1985) in fertility
models is given in table 2, with the reverse transformation in table 3. This
coordinate change simplifies the local stability analysis and in addition suggests
the form that equilibria might take. The first step is to search for symmetric
equilibria with the following structure:

All double homozygotes equal: ¢, = £2; = 33 = Saa = o, (9a)
All single homozygotes equal: 1o = 813 = £y = 834 = &1, (9b)
Double heterozygotes equal: 14 = £ = £», (9¢)
that is,
gn + 812 + g2 = % (9d)

Clearly these entail that all chromosome frequencies are equal: £) = £, = £5 = &4
= ¢ and that there is genotypic linkage equilibrium. This equilibrium is analogous
to the central equilibrium that has been described for a variety of two-locus
viability models (Lewontin and Kojima 1960; Bodmer and Felsenstein 1967,
Karlin and Feldman 1970a, 1970b). The frequency dependence in our Kkin-
selection models, however, will cause the equilibrium genotype frequencies (go,
&1, &,) to differ from those of the corresponding viability model. Thus the similar-
ity between the kin-selection and viability models is not complete. By inspection
of table 2 it is clear the conditions (9) leave all i;’s equal to 0 except u;, ug, Uy,, and

ug. Since u; = 1 and ug = u;; = i, say, we need only consider the two
equilibrium equations given below,
Ti = (hy — ha) [—v/4 + B (1 + 0)*16] (10a)
Tuyg = (hg + hy — 2h){—~v/4 + B[l + 2id + ue
+ (1 = 20%(0 + uye — 2i)1%/64} (10b)

where T =1 + (8 — y)(ho + 2k, + h,)/4. Equation (10a) has a single root in the
range (—1,1) of validity of i, and this root, when substituted into (10b), produces
a unique valid root for u,¢. Although the equilibrium value of 7 = 48,, — 284 is
independent of r, the value of u,¢ = 48, + 2814 — 42, does vary with r. Thus,
although there is gametic and genotypic linkage equilibrium the genotype frequen-
cies depend on the recombination fraction. Since the equilibrium chromosome
and gene frequencies are exactly the same as those arising from the corresponding
symmetric viability model this equilibrium can be regarded as viability analogous.

The local stability of (10) has so far defied analysis. We have made an extensive
numerical survey of its stability which we summarize later in our more general



544

THE LINEAR TRANSFORMATIONS OF GENOTYPE FREQUENCIES LISTED BELOW DEFINE A NEW COORDINATE
SysTEM, WHICH Is USED To STUDY THE EQUILIBRIUM BEHAVIOR OF THE MODEL
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TABLE 2

AS DESCRIBED IN THE TEXT

EquiLiBRIA DESCRIBED IN TERMS OF THE COORDINATES GIVEN IN TABLE 2 ARE TRANSFORMED TO
GENOTYPE FREQUENCIES USING THE FOLLOWING IDENTITIES

W =gn+ g2+ gt guat 8ot gt gt 83t g3a+ gu
U = gy + g3 - &x» — 824 t &3 — 8aa
Uz = g+ g2 + 222 — 83 T 83~ 8
Uy = gn t 814 T 822 — g2 - &xn + 8aa
Ue = 8n — 82+ 813 — Lua T 82— €n3+ gau + 833 — Las t 8ua
u; = gn — &8s~ 82 t+ gn — 833 + 8aa
g = g1 — g2 + g 83 1 83— 8u
Wy =8ut+ 82— 813~ &iat 8n — 8~ &at gt gt gu
U2 = gu —- 813 - 8 t 82 + g3 — 844
Uie = 8 — 812~ 813+ gt 82+ €23 — 8o+ 833 — a4+ 8uu
TABLE 3

gu = (uy + 2y + 2u3 + 2uy + ug + 2u7 + 2ug + uyy + 205 + 1,6)/16
g1z = [ty + 2uy + upy) — (ug + 2ug + 16))/8

g3 = [y + 2us + 1) — (uyy + 202 + 11,6)1/8

g1a = [(uy + 21y + uyg) — (g + 2us + 1;))/8

82 = [y + 213 + ug + 2ug + uyy + tig) — Qus + 24 + 217 + 2u.)1/16
8ar = [(uy + 2u7 + tyg) — (g + 2us + 1, ))/8

824 = [y + 2upy + ue) — (g + 2tz + 16)l/8

g3 = [y + 2u; + ug + wyy + 2un + 1) — Qua + 2uy + 2u7 + 2ug))/16
g3 = [y + 2ug + 1)) — (ug + 2uz + 16))/8

8as = [ty + 2uy + 207 + 4e + uyy + te) — Quz + 2u3 + 2ug + 2u,2))/16

discussion of the results of numerical iteration of the system (2). However, two
special cases are amenable to analysis and serve to illustrate some of the inter-
esting stability properties of the central equilibrium (10). The first of these has A,

+ hy = 2h, and the second h, = hy.

Here, from (10b) u,¢ = 0, so that

Special Case 1: hy + hy = 2h, (Symmetric Additivity)

&

1 A — 1 A
8,8 =1— 280,
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where gy is the solution to the quadratic equation
83 Blho — )2 + golylhe + h)2 — B(The + 9h2)/16 — 1]
+ BU7hy + 15h5)/8° + (1 — vhy)/16 = 0. (11b)

Note that this equilibrium is independent of the recombination fraction.
In studying the local stability of (11) we note that at » = 0 there is a unit
eigenvalue. For r > 0 the leading eigenvalue, which governs the local stability, is

_ 1 = y(hy + 3ho)/4 + BLho(9/16 + go) + hx(7/16 — $¢)]
1+ B — vh + h)2 '

(12)

andv < 1if

(ho — h2)IBG + 480) — v] < 0. (13)

It is helpful to recall that with symmetric additivity the four chromosome
fixation states are stable if B/2 > vy, h, < hy or /2 <+, h, > ho and unstable if B/2 >
Y, h2 > ho or B/2 <y, hy < ho. In addition, when B/2 > vy and h, > hg or /2 < v and
hy < hg, there are no structural equilibria on the gene fixation edges. The other two
cases, B/2 >y, hg > h, and B/2 < v, hy > hy, allow structural equilibria on the gene
fixation edges provided that y and B/2 are not too far apart. For example, if i, > hy
then when v is larger than and close to /2, structural equilibria exist, but if v is
close to B, they do not. Similarly, if 4y > h, then for v less than and close to B/2
structural equilibria exist but for -y close to p/4 they do not.

These boundary considerations are relevant to interpretation of (13). If hy > hy,
B/2 > v then if r > 0 (11) is locally stable, the corners are unstable and the gene
fixation viability-analogous equilibria are unstable in the two-locus sense. If k> >
ho and vy > (/2 then the corners are stable and the viability-analogous gene-
fixation-edge equilibria may also be stable. If y is not too much larger than /2 the
interior polymorphism (11) may also be stable according to (13) if » > 0.

When h, < hy, B/2 < v the corners are unstable, the viability-analogous edge
equilibria are unstable and the polymorphism (11) is locally stable. If &> < A, B2
> v, then provided r is not too small, the corners, edges, and polymorphism (11)
may all be stable simultaneously if r > 0.

A numerical example of additive symmetry is the following table of / values:

AA Aa aa
BB 1 0.5 1
Bb 05 0 0.5
bb 1 0.5 1.
Here hg = 1, hy = 0.5 = (ho + h»)/2. For example, with 3 = 0.81,y = 0.4, r =
0.5, all corners, all viability-analogous edge equilibria, and the central point are
stable. Similar equilibrium patterns can be observed with y > B/2 and k> > hy,

€g,ho=0,h =1, =078, v =04, and r = .02.
Remark.—Note that the D = 0 equilibrium under additive viabilities can never
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be simultaneously stable with boundary equilibria. In the present case the fre-
quency-dependent selection results in a more intricate equilibrium pattern.

Special Case 2: h, = hy

This case is clearly degenerate in several respects. First, from (6) it is seen that
the external eigenvalue for a viability-analogous edge equilibrium is unity, while
from (3b), at ¥ = 0 the chromosome fixations also have a unit eigenvalue. This
suggests that equilibrium surfaces may exist in the interior of the frequency
simplex. It is clear, however, that under the condition 4> = hgy, i = 0 solves (10a)
and an equilibrium is given by

g =13 — 28 — 2o, (14a)
8o = (1 — 48,)/8, (14b)
2 = (1 — 0)/8, (14¢)

where i solves the quadratic
wWBhy — h)(1 — 2r + 2,728 — ulB(hy — ho)(1 — 2r + 2r9)%4 + 1
+ B — ) (hy + h)/2] + (ho — RDIBA — 2r + 2/9)%/8 — /2] = 0. (15)

For all », (15) has a unique valid root, but the local stability analysis for this
equilibrium produces a unit eigenvalue. In fact, from the other eigenvalues, u is
locally unstable if

vIm/2 — ho3 = ] — r + B{l2gi(1 — ») + (1 — 4gpr(1 — r)? — 4]
+ holgi(1 —21) + (G — g)3 — 8r + 82 — 4% —31>0.  (16)

When (16) is violated, the unit eigenvalue is the largest, and linear analysis is
inadequate. Numerical analysis indicates that when (16) holds there is conver-
gence to chromosome fixation, while when it is reversed there appears to be
extremely slow convergence to a surface whose nature is as yet unclear.

Numerical Results.—The following remarks should not be regarded as a com-
plete description of the many iterations of (2) with various values of B, vy, A9, i1,
and A, that have been carried out. Rather, we point out some of the important
similarities and differences between the present frequency-dependent symmetric
altruism model and symmetric viabilities, as studied by, e.g., Karlin and Feldman
(19706) and Feldman and Liberman (1979). For tight linkage, as (7) and (8)
indicate, with /2 > v, hy > hg and hy + h, > 2h,, as well as the case where all of
these are reversed, there are stable high complementarity equilibria. These are
not, however, of the form £, = £4, £ = %3 as might have been expected from the
symmetric viability theory. As the recombination rate is increased under these
conditions, the central point (11) becomes stable. Whether these high complemen-
tarity equilibria should be termed structural in the sense of Uyenoyama et al.
(1981) is an open question.

With the completely symmetric viabilities of Lewontin and Kojima (1960), the
central point D = 0 cannot be stable if the double homozygote is fitter than the
double heterozygote. This condition is not required of the 4’s in the symmetric
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kin-selection framework. For example, if 3 = .81,y = 4, hy = 1, hy = .51, and h,
= 0, we have Ay + h, < 2h, (negative epistasis) but s, < hy. Nevertheless, there is
a domain of attraction to the equilibrium (10).

Surprisingly, the high complementarity equilibria may overlap in stability with
the central point (10). Corners may overlap in stability with the high complemen-
tarity points and with the central point. If the first two of the above three
inequalities hold but Ay + h>, — 2k, < 0, the situation is analogous to negative
epistasis in viability and the central point is stable for all recombination values.
Recall, however, that if hg + h, = 2h,, additive symmetry, there can be simul-
taneous stability of chromosome and gene fixation as well as the central polymor-
phism.

These findings suggest that an ‘‘inclusive fitness’’ gene frequency approach is
unlikely to reveal much of the dynamic structure when the kin selection is caused
by two linked loci. It is worth noting with respect to single-locus kin-selection
theory that Michod and Abugov (1980) suggest that 3/2 > vy and simple overdomi-
nance in #’s (i.e., Aa > AA, aa) are sufficient for stability of the viability-
analogous equilibrium. The exact condition for its stability is more complicated,
however, and it can be stable with (1) /2 > v and underdominance or (2) /2 <y
and overdominance. For example, if 8 = .81,y = .4, AA and aa have # = 1.0 and
Aa 0.5, both gene fixations and the viability-analogous equilibrium are stable with
unstable structural equilibria separating them (see also Uyenoyama and Feldman
1981).

DISCUSSION

In order to compare the present results with those for one locus obtained most
generally by Uyenoyama et al. (1981) we define

Fr=gun + (g2 + 83+ 142 — r(gis — g2
o= g + (812 + 82 + £24)2 + H(g1s — 2232

il

g3 + (g3 + g + g34)/2 + H(gia — g23)2

Xy = Qas + (814 T 824 + £34)/2 — r(g1a — 8232
Let o; = I, %(h; — h), where Z; £;&; = 0. Then o; are analogous to the additive
genotypic values, and the variance among siblings is

Var(sib) = > > £t — o).
J

i

X3

Following Uyenoyama et al., we then compute the covariance between the
additive genotypic value and fitness of sibs:

Cov(sib G, sib F) Z R
— =2 (XIX; -2 Z X0

W 17

+ r(gis — g oy + ag — ap — a3)

where W is the normalizer from (2).
Heuristically, we expect equilibria to be given by Cov(sib G, sib F) = 0, which
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isseentobetrueonlyif (1) r = 0or(2) gis — g3 =D =0,0or3)a; + ag — a, —
az = 0. The last condition clearly is met only when the 4’s are truly additive, as
when hy + h, = 2h, above. The D = 0 points, however, will also satisfy the
heuristic, while with » = 0 the multiple-allele theory of Uyenoyama et al. is
sufficient.

We can rewrite (17) at equilibrium

B Cov(sib,sib) — v Var(sib)
= r(ghs — gy + ag — o — o) W.
The equilibria have either Var(sib) = 0 or, writing b(sib,sib) as the regression,

rgls — ghalay + ag — ay — az) W
Var(sib)

In the symmetric model studied here the central point given by (10) always
satisfies Var(sib) = 0 and micht therefore properly be called a viability-analogous
two-locus equilibrium. Under only one of the three above conditions does Hamil-
ton’s heuristic equilibrium criterion, 8 b(sib — sib) = v, predict any other
equilibria. These findings agree with those of M. K. Uyenoyama (personal com-
munication) in the sex-linked case.

Insofar as the initial increase conditions at boundary equilibria are concerned,
inspection of (4) and computation of the covariances reveals that only if r(ay + a4
— ap — a3) = 0 does a Hamilton-type condition emerge. Thus only if r(e; + oy —
ar, — az) = 0 is stability at a corner predicted by the positivity of lim [Cov(sib
G,sib F)/W at the corner. Again this result has also been shown by M. K.
Uyenoyama (personal communication) for the sex-linked case. It should be em-
phasized that epistasis between the loci involved in the kin selection can result in
initial increase of alleles at both loci under conditions which, according to classi-
cal one-locus theory, would prevent their increase at either loci. Further, the
dependence of this sort of anomalous behavior on the linkage between the loci
may not be monotonic.

B b(sib,sib) — y =

SUMMARY

The dynamics of a two-locus, two-allele model of kin selection with sib-to-sib
interactions are analyzed. The initial increase of altruistic alleles at each locus
separately can be predicted from Hamilton’s criteria for single-locus, sib-sib kin-
selection models. The addition of a second locus controlling altruistic behavior
will permit the increase of altruistic alleles even when Hamilton’s condition is not
satisfied. In addition, there may exist certain polymorphic equilibria which cannot
be reconciled with Hamilton’s theory. In general it is only under rather special
conditions that the dynamics of this two-locus genetic model can be considered in
terms of Hamilton’s theory.
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